Publications
Publications
Naas, J*., Balmana, M.*, Holcik, L., Novatchkova, M., Dobnikar, L., Krausgruber, T., Ladstätter,S., Bock, C., von Haeseler, A.#, Esk, C.#, Knoblich, J.A.#, 2024. Reconstitution of Human Brain Cell Diversity in Organoids via Four Protocols. BioRxiv (preprint). https://doi.org/10.1101/2024.11.15.623576.
Lindenhofer, D.*, Haendeler, S.*, Esk, C.*,#, Littleboy, J.B.*, Avalos, C.B., Naas, J., Pflug, F.G., Ven, E.G.P. van de, Reumann, D., Baffet, A.D., von Haeseler, A., Knoblich, J.A.#, 2024, Cerebral organoids display dynamic clonal growth and tunable tissue replenishment. Nat. Cell Biol. 26, 710–718. https://doi.org/10.1038/s41556-024-01412-z.
Pflug, F.G., Haendeler, S., Esk, C., Lindenhofer, D., Knoblich, J.A., and von Haeseler, A., 2024. Neutral competition explains the clonal composition of neural organoids. PLOS Comput. Biol. 20, e1012054. https://doi.org/10.1371/journal.pcbi.1012054.
Beirute-Herrera, J., Calvo, B.L.-A., Edenhofer, F., and Esk, C., 2024. The promise of genetic screens in human in vitro brain models. Biol. Chem. 405, 13–24. https://doi.org/10.1515/hsz-2023-0174.
Li, C., Fleck, J.S., Martins-Costa, C., Burkard, T.R., Themann, J., Stuempflen, M., Peer, A.M., Vertesy, Á., Littleboy, J.B., Esk, C., Elling, U., Kasprian, G., Corsini, N.S., Treutlein, B., Knoblich, J.A., 2023. Single-cell brain organoid screening identifies developmental defects in autism. Nature 621, 373–380. https://doi.org/10.1038/s41586-023-06473-y
Hagelkruys, A., Horrer, M., Taubenschmid-Stowers, J., Kavirayani, A., Novatchkova, M., Orthofer, M., Pai, T.-P., Cikes, D., Zhuk, S., Balmaña, M., Esk, C., Koglgruber, R., Moeseneder, P., Lazovic, J., Zopf, L.M., Cronin, S.J.F., Elling, U., Knoblich, J.A., Penninger, J.M., 2022. The HUSH complex controls brain architecture and protocadherin fidelity. Sci Adv 8, eabo7247. https://doi.org/10.1126/sciadv.abo7247
Vértesy, Á., Eichmüller, O.L., Naas, J., Novatchkova, M., Esk, C., Balmaña, M., Ladstaetter, S., Bock, C., Haeseler, A., Knoblich, J.A., 2022. Gruffi: an algorithm for computational removal of stressed cells from brain organoid transcriptomic datasets. Embo J 41, e111118. https://doi.org/10.15252/embj.2022111118
Pflug, F.G., Haendeler, S., Esk, C., Lindenhofer, D., Knoblich, J.A., Haeseler, A. von, 2022. Neutral competition within a long-lived population of symmetrically dividing cells shapes the clonal composition of cerebral organoids. Biorxiv 2021.10.06.463206. https://doi.org/10.1101/2021.10.06.463206
Esk, C*., Lindenhofer, D*., Haendeler, S., Wester, R.A., Pflug, F., Schroeder, B., Bagley, J.A., Elling, U., Zuber, J., Haeseler, A. von, Knoblich, J.A., 2020. A human tissue screen identifies a regulator of ER secretion as a brain-size determinant. Science 370, 935–941. https://doi.org/10.1126/science.abb5390
Camus, S.M., Camus, M.D., Figueras-Novoa, C., Boncompain, G., Sadacca, L.A., Esk, C., Bigot, A., Gould, G.W., Kioumourtzoglou, D., Perez, F., Bryant, N.J., Mukherjee, S., Brodsky, F.M., 2019. CHC22 clathrin mediates traffic from early secretory compartments for human GLUT4 pathway biogenesis. J Cell Biol 219, 2693–21. https://doi.org/10.1083/jcb.201812135
Wimmer, R.A., Leopoldi, A., Aichinger, M., Wick, N., Hantusch, B., Novatchkova, M., Taubenschmid, J., mmerle, M.H. x000E4, Esk, C., Bagley, J.A., Lindenhofer, D., Chen, G., Boehm, M., Agu, C.A., Yang, F., Fu, B., Zuber, J., Knoblich, J.A., Kerjaschki, D., Penninger, J.M., 2019. Human blood vessel organoids as a model of diabetic vasculopathy. Nature Publishing Group 1–34. https://doi.org/10.1038/s41586-018-0858-8
Fededa, J.P., Esk, C., Mierzwa, B., Stanyte, R., Yuan, S., Zheng, H., Ebnet, K., Yan, W., Knoblich, J.A., Gerlich, D.W., 2016. MicroRNA‐34/449 controls mitotic spindle orientation during mammalian cortex development. Embo J 35, 2386–2398. https://doi.org/10.15252/embj.201694056
Majeed, S.R., Vasudevan, L., Chen, C.-Y., Luo, Y., Torres, J.A., Evans, T.M., Sharkey, A., Foraker, A.B., Wong, N.M.L., Esk, C., Freeman, T.A., Moffett, A., Keen, J.H., Brodsky, F.M., 1AD. Clathrin light chains are required for the gyrating-clathrin recycling pathway and thereby promote cell migration. Nat Comms 5, 1–14. https://doi.org/10.1038/ncomms4891
Hoshino, S., Sakamoto, K., Vassilopoulos, S. phane, Camus, S. phane M., Griffin, C.A., Esk, C., Torres, J.A., Ohkoshi, N., Ishii, A., Tamaoka, A., Funke, B.H., Kucherlapati, R., Margeta, M., Rando, T.A., Brodsky, F.M., 2013. The CHC22 Clathrin-GLUT4 Transport Pathway Contributes to Skeletal Muscle Regeneration. PLoS ONE 8, e77787. https://doi.org/10.1371/journal.pone.0077787.s002
Xie, Y., Jüschke, C., Esk, C., Hirotsune, S., Knoblich, J.A., 2013. The Phosphatase PP4c Controls Spindle Orientation to Maintain Proliferative Symmetric Divisions in the Developing Neocortex. Neuron.https://doi.org/10.1016/j.neuron.2013.05.027
Esk, C., Chen, C.-Y., Johannes, L., Brodsky, F.M., 2010. The clathrin heavy chain isoform CHC22 functions in a novel endosomal sorting step. J Cell Biol 188, 131–144. https://doi.org/10.1083/jcb.200908057
Vassilopoulos, S.*, Esk, C.*, Hoshino, S.*, Funke, B.H., Chen, C.-Y., Plocik, A.M., Wright, W.E., Kucherlapati, R., Brodsky, F.M., 2009. A role for the CHC22 clathrin heavy-chain isoform in human glucose metabolism. Science 324, 1192–1196. https://doi.org/10.1126/science.1171529
Meyerholz, A., Hinrichsen, L., Groos, S., Esk, C., Brandes, G., Ungewickell, E.J., 2005. Effect of clathrin assembly lymphoid myeloid leukemia protein depletion on clathrin coat formation. Traffic 6, 1225–1234.https://doi.org/10.1111/j.1600-0854.2005.00355.x